Formation of monofunctional cisplatin-DNA adducts in carbonate buffer
نویسندگان
چکیده
منابع مشابه
Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.
Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism...
متن کاملMonofunctional DNA-platinum(II) adducts block frequently DNA polymerases.
The question of whether monofunctional DNA platinum(II) adducts block synthesis of DNA by purified DNA polymerases of different types and origin has been investigated by comparing the time dependence of synthesis arrest and of DNA adduct formation. Activated salmon testis DNA is used as a suitable substrate for DNA synthesis allowing to probe inhibition by platinum(II) monoadducts for the varie...
متن کاملMonofunctional and Interstrand DNA Adducts of Platinum(II) Complexes
The effects produced in DNA by monofunctional or interstrand adducts of platinum(II) complexes have been summarized. The monofunctional adducts destabilize DNA in a sequence-dependent manner via conformational distortions, which may have a denaturational character. It has been suggested that this conformational alteration facilitates in DNA the formation of the bidentate DNA adducts, whose form...
متن کاملRecognition and repair of DNA-cisplatin adducts.
Anticancer activity of cisplatin (cis-diamminedichloroplatinum) is believed to result from its interaction with DNA. The drug reacts with nucleophilic sites in DNA forming monoadducts as well as intra- and interstrand crosslinks. DNA-cisplatin adducts are specifically recognized by several proteins. They can be divided into two classes. One constitutes proteins which recognize DNA damage as an ...
متن کاملIn situ analysis of cisplatin binding to DNA: the effects of physiological ionic conditions.
Platinum-based anti-cancer drugs form a major family of cancer chemotherapeutic agents. Cisplatin, the first member of the family, remains a potent anti-cancer drug and exhibits its clinical effect by inducing local DNA kinks and subsequently interfering with DNA metabolism. Although its mechanism is reasonably well understood, effects of intracellular ions on cisplatin activity are left to be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inorganic Biochemistry
سال: 2006
ISSN: 0162-0134
DOI: 10.1016/j.jinorgbio.2006.01.040